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Abstract-Conjugate heat transfer of continuously moving surfaces (flat plate, circular cylinder) is analyzed 
taking account of heat conduction in the moving solids, and is shown to be completely arranged using 
the conjugate dimensionless group [x&~,c,/u,e’@,c,)’ for flat plate, x%~p~c~/u,R*(p,~,)~ for cylinder]. 
Also the effect of the combination of the solid and the fluid is made clear, first by theoretical studies, 

then by experiments of flat plates in the water. 

NOMENCLATURE 

thermal diffusivity; 
coordinate normal to the paper; 
physical properties parameter, &2rp,cf/&p,c,; 
specific heat; 
half thickness of flat plate; 
dimensionless stream function, equation (24); 
function of Pr, equation (46); 
dimensionless functional relation; 
gravitational acceleration; 
Grashof number, g/?~8,x3/$; 
local heat-transfer coefficient; 

LL,,LL,L,, fundamental dimension of 
length for x-, y-, z-, b-, q-direction; 

M, fundamental dimension for mass; 
Na, local Nusselt number, hx/A,-; 

Pe, Peclet number, u,x/a,; 

Pr, Prandtl number, vs/as; 
R, radius of cylinder; 

Re, Reynolds number, u, XJV~ ; 
6 temperature; 

T, fundamental dimension for time; 

a, 0, velocity component; 

US, drawing speed of solid body. 

Greek symbols 

thickness of laminar velocity boundary layer; 
thickness of laminar temperature boundary 
layer; 
temperature penetration depth in solid body; 
z/e or z/R; 

Ywv,~)‘; 
temperature difference from bulk 
temperature of fluid, t - t, ; 
fundamental dimension for temperature; 
thermal conductivity; 
dynamic viscosity; 
kinematic viscosity; 

conjugate dimensionless x-coordinate, 

x3i/p~c~/u,e2(pscs)2 or ~~~PP/~,~~,R~(P,~*; 
density; 
time; 
time required from stoppage of endless belt 
driving motor to taking of interference 
photograph; 
azimuthal coordinate of cylindrical 
coordinates system; 
function of x, equation (29); 
function of x, equation (30); 
stream function. 

Subscripts 

f, fluid; 

s, solid. 

1. INTRODUCTION 

INVESTIGATIONS on heat transfer of a continuously 
moving flat plate [l-4] and a circular cylinder [S--13] 
have been done under various surface conditions, i.e. 
that the surface temperature is constant, that the surface 
heat flux is constant, that the moving solid and the fluid 
are conjugated through surface thermal conditions, etc. 

According to general characteristics of conjugate 
heat-transfer problems [14], in heat transfer of the 
continuously moving surface under conjugated condi- 
tions the combination of physical properties of the 
moving solid and the surrounding fluid is supposed to 
play an important role, since this problem is an un- 
steady one from a viewpoint of the coordinates system 
fixed to the moving solid. However in previous in- 
vestigations under conjugated conditions, theoretical 
analysis has been done neglecting heat conduction in 
the solid [12] and experiments have been carried out 
only in the air by drawing glass fibres [S, 6,9]. 

First, in this paper, the problem is discussed using 
vectorial dimensional analysis which distinguishes the 
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dimensions of length by phases and dimensionless 
functional relations describing the phenomenon are 
determined. The numerical solutions for the flat plate 
and the cylinder, taking account of heat conduction 
in the solid, are given.and arranged using thi conjugate 
dimensionless group [14] and the combination effect 

of physical properties of both phases is made clear. 
Finally, experiments of the flat plate case to demon- 

strate the combination effect varying flat plate materials 
(stainless steel, plastic) and fluid (air, water) are 

described. 

3.2. Flat plate 

The whole region is divided into two regions, one 
from the drawing slit to x, where the temperature 
penetration depth in the solid 6, reaches the centre- 
line of the flat plate, the other from x,, to x = x,. In 

the first region (x < x,~), it must be noted that the half 
thickness of the flat plate does not concern the phenom- 
enon primarily. The dimensionless functional relation 
for the surface temperature t, (0, = t,- t,) is obtained 

from the following physical quantities (bracketed 
quantities denote dimensions) 

2. FORMULATION OF THE PROBLEM 

As shown in Fig. 1, an infinite solid body of constant 

cross section (flat plate of half thickness e, or circular 
cylinder of radius R) at temperature te(& = to - r,) is 

by selecting Q,, ~_?r, & as independent quantities: 

QW 
- = F(B, Pr) 
00 

(1) 

FIG. 1. Conjugate heat transfer of continuously 
moving solid. 

where B( = &/ps c//J, ps c,) is a parameter representing 
the combination effect. In the following B will be 
denoted as “physical properties parameter”. In equa- 
tion (1) it must be noted that the surface temperature 
of the flat plate keeps a constant value in this region. 
This means that the fluid in this region takes the similar 
laminar boundary-layer state. The local heat-transfer 
coefficient h in this region, therefore, takes the value 

of the similar laminar boundary layer solution for the 
constant wall temperature condition ho. The dimen- 
sionless functional relation for the local heat transfer 

coefficient is thus determined as 

Nuo box u,x + 
-=- - 

continuously drawn with a constant speed u, through :‘C > Pef Af a, 
= F(Pr). (2) 

a drawing slit at x = 0 into a fluid whose bulk tem- 
perature is t,(Q, = 0). Dimensionless functional relations for temperature dis- 

This paper deals with conjugate heat transfer of this tributions in the fluid and the solid are also obtained 

continuously moving surface, namely heat transfer as follows : 

when the temperature field in the solid and that in the es 
fluid are conjugated to each other through thermal - = F(q, B, Pr) 

conditions concerning the temperature and the heat 
00 

(3) 

flux at the surface, under the assumptions that the fluid 6 

is laminar and the drawing speed is fast enough to 
- = F([*, B, Pr) (4) 

neglect axial heat conduction. 
where 

3. THEORY (VECTORIAL DIMENSlONAL ANALYSIS) 

3.1. Vectorial dimensional analpis [14] 

q=y(;r> ~*+J 

In this conjugate problem, the solid and the fluid In the other region (x,, < x), taking account of e[L,], 

have different physical properties for heat conduction, the following dimensionless functional relations for the 

on the occasion of applying vectorial dimensional surface temperature and the local heat-transfer coef- 
analysis to this problem, the z-coordinate must be ficient are obtained: 

distinguished from the y-coordinate (as to the coordi- 
nates system see Fig. l), although they have the same (5) 

spatial direction. As the fundamental dimensions of 

: = F(<, B, Pr) 
0 

length, L, is taken for x-direction, L, for y-direction, 
L, for z-direction and Lb for b-direction. (6) 
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for the local heat-transfer coefficient is determined as 

U-3 

and 5 is a conjugate dimensionless x-coordinate, that 
is, its definition includes both the conventional dimen- 4. THEORY (NUMERICAL SOLUTIONS) 

sionless group defined in the fluid u,x/af and the con- 4.1. Flat plate 
ventional dimensionless group defined in the solid 
a,x/u,e’. Dimensionless functional relations for tem- 

The fundamental equations for the continuously 
moving flat plate are 

perature distributions in the fluid and the solid are also 
determined as au+?!=0 

ax ay (13) 

Of 
- = F(5, t?, B, Pr) 
00 

(8) au au a2u 

0s 
u;r+vgj= bay2 (14) 

- = F(5, i, 4 Pr) 
00 

ae, ae, ale, 
ux+Vy=a,w (15) 

where 
ae, aze, 

us z = a, s (16) 

Thus, when the flat plate with uniform temperature and relating boundary conditions are 

B. at the drawing slit is drawn into the fluid, the surface at y=O u=l&, v=o 
temperature experiences an abrupt drop at the instance u=o 

(17) 

of drawing, and this value is maintained until xcr, then 
aty=cc 1 

the surface temperature drops continuously as drawing at x=0 %r = 0, BS = %o 7 
proceeds. 

at y=O(z=o) ef=gs, -;,“I=~s~ ay Z 

3.3. Cylinder (181 

In the neighbourhood of the drawing slit, the situ- 
at y=c0 e, = 0 

ation for the cylinder is the same as for the flat plate. at z=e ae,_ 
In the cylinder case it must be noted that the radius aZ - 

0. 
J 

of the cylinder plays two roles, one as a characteristic 
length of the cylinder R,, and the other as a charac- 

Rewriting fundamental equations and boundary con- 

teristic length of the fluid side coordinate R,, and the 
ditions into dimensionless forms following equations 

dimensions of the former role is L, while that of the 
and boundary conditions are obtained: 

latter role is L,. Thus there is no reason to divide d’f f d2f 
regions in the cylinder case as is done in the flat plate 3$-.1=O (19) 

case. 
The dimensionless functional relation for the surface 

temperature is determined taking account of physical 

~(~)+pr.~~(~)~Pr.~.:.~~) (20) 

quantities B.$($$($) (21) 

and 

as follows : 
at l=O -_=I !!LJ!P 0s 

\ 

RfPSCS B pr 
e. ’ eo eo 

RsPsCs" 
(10) 

where 5 is a conjugate dimensionless x-coordinate 
defined by _a Of _ (Pr.t)+ a 8, 

x4 Pf cr 
C-1 all e. B (-) > (23) 

x e. 
5= 

us R2@s cJ2 
(11) 

at q=co ef 0 -= 

and the parameter RJpfcf/R,pscs is substantially equal 
00 

to p~cf/p,c,, the form p~c,/p,c, will be used in the at (=l 
ah o 

following. Also the dimensionless functional relation -C-1= a< e. , 

at q=O df 
drt=l, f=” 

at q=cc df - 0 
(22) 

&- 
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wheref(n) is the dimensionless stream function defined combination effect. In this study, heat conduction in 

by z-direction in the cylinder is taken account of. 
Fundamental equations of integrated forms are 

as is done usually. The solution of the energy equation 
of the fluid for the constant surface temperature con- 

dition 

is taken as the starting temperature condition in the 
fluid. The numerical solution of equation (19) with 

where 6, 6, are velocity and temperature boundary- 

boundary conditions equation (22) f(q), has been 
layer thicknesses respectively. The velocity profile is put 

already given by Sakiadis [15]. In this study, equations 

in the form 

(20), (21) with boundary conditions equation (23) are u 

simultaneously solved using Sakiadis’ solutionf(r7). 
_= l-l.ln l+j 

( j 
(29) 

us cp 

<IO_5 Present data 

3 m” 0 I 
.-_-___ 

5- -_-_____ 
Theoretlcol solutions 

- ----Pr=l 

--- Pr = IO 
Extrapolation p0int.X 

- For experimental 
conditions 

log E 
FIG. 2. Surface temperature of continuously moving flat plate. 

Numerical calculations are carried out as follows. 
The whole region including both the fluid and the solid 
are divided into the grid. Along the x-coordinate lines 
of the grid are numbered as i = 1,2,. , and so on, 
along the z-coordinate as j = 1,2,. . . , j, starting from 
the centre-line of the flat plate (number j, denotes the 

surface) and along the y-coordinate as j = j, + 1, j,, + 2, 
, j,,,. When temperature distributions at any axial 

position i, tl,(Tj, j = 1,. . . , j,)andO,(~j,j=j,,...,j,,,), 
are known, the temperature distribution at the axial 
positioni+l(~+,j,j=l,...,j,,...,j,,,)isdetermined 

by equations (20), (21) with boundary conditions equa- 
tion (23) in finite difference forms, as the solution of 
j,,,-dimensional linear equations. Calculation results 

for the surface temperature are given in Fig. 2 as 
theoretical solutions. 

4.2. Cylinder 

It is difficult to solve fundamental equations for 
cylinder in partial differential forms, here the problem 
is solved using the integral method, the same method 
used by Bourne and Dixon [12]. They neglected heat 
conduction in the cylinder, and could not detect the 

and the temperature profile in the huid 

Qf 
o= l-l.ln l+$ 

w dJ ( > (30) 

where cp and 4 are unknown functions of x. On the 
other hand, the temperature profile of the cylinder in the 

region x < x,, is expressed in the form 

OS-00 
-= 

&V-00 

l-2. $ + f 0 ii 
2 

(31) 
s s 

using boundary conditions 

at z=O 0, = 0, 

at z = 6, &=&, $0 
(32) 

and in this region there exists one more condition, i.e. 

4Wf = qVvs* and this condition can be expressed by 

L&&as 

6, R, 80 - 6, 
x= 2.&,.H 

w 
(33) 

In the region x > x,, the temperature profile is deter- 
mined as 



Conjugate heat transfer of continuously moving surfaces 465 

FIG. 3. Surface temperature of continuously moving cylinder. 

using conditions 

at z=O es = e,, qws = %v, 

a 
at z=R -=O. 

dZ 

Putting equation (29) into equation (26) and re- 
arranging, the momentum equation takes the form 

(36) 

The energy equation for the fluid can be converted 
into the following form, inserting equations (29) and 

(30) into equation (27), 

d - 
dq 

(37) 

zz-. (38) 

The energy equation for the cylinder, equation (28) is 
transformed into 

in the region x < xc, using equation (31) and 

0, (-1 e. pscr = -_. __ .e*+;;+~+f (40) 
Pr ( > PSG 

in the region .x > xc, using equation (34). 
Numerical calculations are carried out as follows. 

First, integration of equation (36) gives the relation 
between 5 and cp. Then the energy equation for the 

fluid and the energy equation for the cylinder are 
simultaneously solved concerning unknowns &$3e and 
4 as functions of cp, and through the relation between 
5 and 50, solutions are converted to relations f?,,JBa vs 5 

and C#I vs 5. The relation 4 vs < is finally arranged as 
the relation Nu/Pe* vs < using 

(41) 

In Fig. 3, the surface temperature variation with 5 
are shown for Pr = 10. 

4.3. Considerations on the theoretical results 
Vectorial dimensional analysis shows that the 

moving solid experiences a sudden drop of the surface 
temperature at the neighbourhood of the drawing slit, 

under the assumptions stated in Section 2, and the 
temperature is determined by the flow condition and 
the combination of the fluid properties and the solid 
properties. Numerical calculation results shown in 

Figs. 2 and 3 confirm this situation. 
As a preparation, the classical contact problem of 

unsteady heat conduction is considered. Two half- 
infinite bodies at different temperatures (tof inf-phase, 
tes in s-phase) are suddenly brought into contact at 
time r = 0. According to the textbook on heat con- 
duction [16], the temperature of the boundary surface 
0,( = t,- to,-) is kept constant during whole process 
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t > 0, and the value is given as follows (0” = for-toJ) 

0, i,u,+ 
~ = ._._~---~ 

3., a; f + if a,- + 
(42) 

This equation can be rewritten using B as 

0, 1 

,,- 1SBf 

Now we return to our problem. As stated in the 

Section 3, near the drawing slit the dimension e does 
not concern the phenomenon primarily, the solid in 
this region can be considered to be half-infinite. If the 
problem is seen from the viewpoint of the coordinates 

system fixed to the moving solid, the problem is similar 
to the above described unsteady contact problem, only 
differing in that there exists the laminar flow in the 

fluid. The classical theory states that the temperature 
distribution in the half-infinite solid is 

0,-Q, 
B0-QW 4 1 erf 2 ,,;a,*, 

and the surface heat flux calculated from this equation is 

&(&I - 8,) 
q 

ws = &U&r, 
(45) 

On the other hand, as the fluid is in the state of the 

similar laminar boundary layer with the constant 

surface temperature, heat transfer can be expressed by 

Nuo - = f. 
Pet 

where f. is a function of Pr only and f. = 0.4114, 
O&38,0.5314, . . . , according to Pr = 0.7, 1, 10, . . . [l]. 
Equation (46) gives the surface heat flux calculated from 
the fluid side: 

AS the drawing speed u, is constant, dependency of 

qws and qwr on x are equal, and putting qws = q,,,/ the 
following formula is obtained: 

Rv 1 

00 l+Bi~J7c~fo’ 

The values calculated by equation (48) coincide with 
numerical solutions shown in Fig. 2 and Fig. 3. It 
must be also noted that equation (48) coincide with 
equation (43) when the fluid becomes still relative to 
the solid, i.e. when Pr + cc. 

5. EXPERIMENT 

In this chapter, experiments to check theoretical 
results, especially the effect of the physical properties 
parameter, varying combinations of fluids (air, water) 
and flat plates (stainless steel, plastic), are described. 

The experiments are limited to the flat plate case, 
since the effect of the physical properties parameter on 
the cylinder case is much the same, and as to the 
cylinder case only a comparison between theoretical 
results and the presently available data which are 
arranged using the conjugate dimensionless x-coordi- 
nate is made. 

5. I. Experimentul appwtrtus 

There are at least two ways to realize the flow of 
the continuously moving flat plate in the laboratory, 
one to use a large diameter drum such as used by Tsou 
rt al. [I], the other to use an endless belt or a very 
long belt. In this study, endless belts of 4-4.5m long 
and 4cm wide are used. The driving system of the 
endless belt is shown in Fig. 4. The motor, through 

FIG. 4. Experimental apparatus. 

the pulley A, drives the endless belt with speed u, from 
0.45 to 3.0m/s. The pulley C can be slid horizontally 
and gives the tension to the endless belt. Cylindrical 
heaters G and H can heat the endless belt with variable 
heating rate. The measuring section is the circular 
window region positioned at the upper part of the 
measuring vessel fitted to the frame. The measuring 
vessel (260 x 200 x 70mm) is composed of two half- 
vessels and assembled holding the endless belt between 
them. 

The velocity distribution in the air is measured by 

the constant-temperature type hot anemometer (tung- 
sten hot wire of Sydia.). Temperatures in the fluid 
are measured by the Mach-Zehnder interferometer 
(6 cm dia.). 

5.2. Meusuriny principle of surfuce temperaturr in water 

experiments 

In air experiments, temperature boundary layers are 
thick enough that displacements of fringes in inter- 
ference photographs give temperature distributions 
through the relation 

6 =+_.i”._t_ 
’ Asd L dn 

i-1 

(4% 

dt, 

where L is the width of the endless belt, n is the 
refractive index of the fluid, i,,, is the wave length of 
the monochromatic light, AsI is the distance between 
neighbouring reference fringes and As is the fringe 
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displacement from the reference fringe at an arbitrary 
position y (see Fig. 5). However in water experiments, 
temperature boundary layers are quite thin and almost 

Endless 
'belt 

------- --- r ----..__ 
FIG. 5. Schematic representation of FIG. 6. Unsteady process in water after stoppage 

interference photograph. of endless belt driving motor. 

cannot be seen, so temperature distributions in the 
water when the endless belt is moving cannot be 
obtained. Therefore a following method to determine 
surface temperatures is employed in this study. 

After the endless belt driving motor is suddenly 
made to stop at time z = 0, the surface temperature 
of the endless belt begins to propagate into the water. 
In Fig. 6, interference photographs after the stoppage 
of the endless belt driving motor are shown in order 
of time passage. It can be easily seen that for a short 
time after the stoppage of the endless belt driving 
motor, unsteady heat conduction into the water occurs 
normal to the endless belt surface [the first stage, see 
Fig. 6(a)], then rises heat conduction parallel to the 
endless belt surface and/or natural convection [see Fig. 
6(b), (c)J We notice the first stage of this propagation 
process. In Fig. 6(a) the situation is not clear because 
of over-heating of the endless belt, so thereafter the 
heating rate of the endless belt is appropriately ad- 
justed. One of interference photographs of the first 
stage thus obtained is shown in Fig. 7. Figure 5 
represents the schematic diagram of the interference 
photograph. In the following, the temperature variation 
with time at a fixed axial position x (see Fig. 5) is 
discussed. From time T = 0 to time z = zP when the 
interference photograph is taken, the temperature at 
(x, y) = (x, 0) falls gradually from the initial value e,(x) 
to &(r,). If zP is not so large (in our experiments, 
T,, = 0.5-1.0s) the nose part of the temperature propa- 
gation will keep the initial characteristics. since the 
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FIG. 7. Example of interference photo- 
graph of one-dimensional unsteady 

heat conduction in water. 

temperature change, 0,(z) -&, propagates into the 
water following after the initial temperature propa- 
gation. To confirm this situation, calculations of un- 
steady one-dimensional heat conduction are done, 
giving the initial temperature distribution in the bound- 
ary layer formed when the endless belt is continuously 
moving (the thickness of the temperature boundary 
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‘Theoretccol solutions Conditions Present dato 

er (r) rp (s )uAm/s)x(mml Flot plate 

I oec. 0.45 24.7 

,051’ 0.90 2.30 ’ 31-6 A 
Stainless j 
steel 

---- 
j 060 0.45 j 24.7 0 Plastic 
1 / -3 

Y 

2Jofco 

FIG. 8. One-dimensio~ai unsteady heat conduction in water. 

- Theoretical solutions(Equation(25) 

Re 1 FlatT- 

A 0.56~10~ Stainless steel Present 

o 10.72x103 1 Plastic data 

x 2.1 x103 Stainless steel 

FIG. 9. Temperature distribution in air. 

layer is very thin, as already stated), and the tem- 

perature variation at (x,0) with time in three ways, 
&;‘e, = 1, 0,/O, = l-0.353(2-0.05) and 6,/t& = l- 
(r -0.05). Calculated temperature distributions in the 
water at time rP are shown in Fig. 8. These results 
show that the initial temperature distribution does not 

affect this unsteady heat conduction process, and that 
the nose part of the temperature propagation (@,/@, < 

0.25 in Fig. 8) coincide with each other irrespective 
of differences of given variation ways of the tempera- 
ture with time, and they can be represented by the 
curve erfc[y/2J(ccfr)]. Thus the surface temperature 
0, at the axial position x can be obtained by plotting 
the nose part data derived from the interference photo- 
graph on the curve erfc[J,/2J(ufr)]. Some experimental 
data are also plotted in Fig. 8. 

5.3. Fiat plate results 

Experiments in the air are substantially same to 
experiments with the constant surface temperature, 
since the values of the physical properties parameter 
are less than lo-“ for both the stainless steel endless 

belt and the plastic endless belt, and the measurable 
length of x is less than 4cm, therefore experiments 
in the air are to be done in the neighbourhood of the 
first region described in the Section 3.2 (see theoretical 
solutions in Fig. 2). Temperature distributions by air 
experiments are shown in Fig. 9. By these results it is 
seen that the laminar boundary layer with constant 
surface temperature [see equation (2511 is formed on 
the continuously moving endless belt. 

Surface temperatures of the continuously moving 
endless belt in water experiments are shown in Fig. 2 
using log,, 5. Figure 2 is constructed by the following 
procedure. From one interference photograph as shown 
in Fig. 7,8, for three to five points of x can be obtained 
by the method described in the preceding section. 
However & cannot be measured in our ex~riments~ 
so one value of 0, for an arbitrary point x is first 
put on the theoretical curve, then the reading of the 
ordinate readily gives the value of &_ Using thus deter- 
mined value of f&, 8, for other points are plotted on 
Fig. 2. Extrapolation points in Fig. 2 are derived by 
plotting 6,,,/& vs < directly. 
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_ Theoretical solutions 
for Pr=l, EmlOT 

0 
-6 -5 -4 -3 -2 -I 0 

m t 

FIG. 10. Arrangement of presently available data for continuously moving cylinder. 

5.4. Discussions onjlat plate experiments 
In this section several discussions concerning flat 

plate experiments are made. 
Concerning two-dimensionality of the endless belts 

it seems to be no matter, since thicknesses of boundary 

layers formed on the endless belts are very thin. 
Finiteness of the measuring vessel usually gives rise 

to useless secondary flow disturbances such as a 
circulation, but in our experiments steady states are 
quickly realized after commencement of the endless 
belts driving, therefore measurements can be made in 
short times, within which there can be seen no dis- 
turbances in interference fringes. 

Also disturbances resulting from natural convection 
are not observed, and for the sake of smallness of 
temperature differences between the endless belts and 
fluids, values of Gr/Re2 are less than 4 x lo-’ in air 
experiments and less than 10m4 in water experiments. 

Lastly, in interference photographs taken in water 
experiments reference fringes are slightly curved and 
distances between them are not uniform. Reasons for 
these deformations are probably due to deformations 
of optical glasses attached to windows of the measuring 
vessel and the compensating vessel. However correc- 
tions owing to this are negligibly small. 

5.5. Arrangement of presently available cylinder data 
Presently available cylinder data for conjugate heat 

transfer are those of glass fibers drawn into the air 
[5,6,9]. Data taken from [12] (in [12], data from [6] 
and [9] are cited), arranged using the conjugate dimen- 
sionless x-coordinate, equation (1 l), are plotted in 
Fig. 10. Because of lack of physical properties data for 
glasses under experimental conditions, use is made of 
physical properties data for the quartz glass at 20°C. 

6. CONCLUDING REMARKS 

Conjugate heat transfer of the continuously moving 
surface (flat plate, cylinder) is discussed taking account 
of heat conduction in the solid. Through theoretical 
studies and experiments using the Mach-Zehnder 
interferometer, it is shown that this problem is com- 

HMT Vol. 19. No. 5-B 

pletely arranged by using the conjugate dimensionless 
x-coordinate, and the physical properties parameter B 
which represents the effect of the combination of the 
solid and fluid physical properties on heat transfer is 
also shown to play an important role in this heat 
transfer. 
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TRANSFERT DE CHALEUR CONJUGUE SUR DES SURFACES EN MOUVEMENT 
CONTINU 

Rbumd-On &die le transfert de chaleur conjugut sur des surfaces en mouvement continu (plaque 
plane, cylindre circulaire) en tenant compte de la conduction thermique dans les solides en mouvement, 
et on montre qu’il peut &tre traiti: completement & l’aide du groupement adimensionnel conjugue 
[Xn,p,C,/U,p’ (ps Cs)* pour la plaque plane, Xi,pfC,/Us R* (P~C~)~ pour le cylindre]. L’effet de 
I’association du solide et du fluide est egalement &clairci, d’abord par des etudes theoriques, ensuite par 

des experiences sur plaques planes dam l’eau. 

ZUSAMMENGESETZTER WARMEUBERGANG AN GLEICHMASSIG 
BEWEGTEN OBERFLACHEN 

Zusammenfassuag-Der zusammengesetzte Warmeiibergang an gleichmhsig bewegten Oberflachen 
(ebene Platte, kreisfiirmiger Zylinder) wird analysiert unter Beriicksichtigung der Wlrmeleitung im 
bewegten Festkiirper und wird vollstandig dargestellt durch folgende dimensionslose Gruppen, 

Xl,P, C,/U, ez (Ps C,)* fur die ebene Platte 

X~PJC~U,R~ (P.G)' fur den Zylinder 

Auch der Einflu5 der Kombination von Festkorper und Fluid wird dargelegt, sowohl durch theoretische 
Untersuchungen wie such durch Versuche mit ebenen Platten in Wasser. 

COI-IP%KEHHbIti TEI”IJIOO6MEH HEI-IPEPblBHO ABM)KYIIIMXCII I’IOBEPXHOCTEH 
Allllo~lQl~--AAHrUl~3&4pyeTcR COnpSDKeHHblk Tennoo6MeH Hen~pbiBHORBlt~yUlLlXCSl nOBepXHOCTeti 
(n~~K~~n~~CT~Ha,K~~~OBO~~lr~~H~p)C~~eTOMTen~OnpOBO~HOCT~B~B~~~~clXC~TBep~blXTe~aX. 

nOKWaH0, YTO COnpSlXCeHHblti TennOO6MeH OnHCblBaeTCI C nOMOUlbE0 6e3pa3MepHOrO KOMnneKca 

[i%'h,p,c,/~,e~(p~c,)~ nnfl nnocroti nnacTwHbl w ~~Zplcf/us~Z(p,c,)Z nnn uctnntinpa]. KpoMe roro, 
Te0pe~HYecKkf H sKcnepnMeHTanbH0 Ha npmdepe nnocmix nnacrnn a none uccnenonan 3&$eK~ 

B3aHMOJV5%iCTB,W TBepnOrO Tena H xKHAKOCTC(. 


