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Abstract—Conjugate heat transfer of continuously moving surfaces (flat plate, circular cylinder) is analyzed

taking account of heat conduction in the moving solids, and is shown to be completely arranged using

the conjugate dimensionless group [xAspycs/u,e*(psc)* for flat plate, x2;ppcy/u, R¥(psc;)* for cylinder].

Also the effect of the combination of the solid and the fluid is made clear, first by theoretical studies,
then by experiments of flat plates in the water.

NOMENCLATURE

thermal diffusivity;

coordinate normal to the paper;

physical properties parameter, A;pycr/Aspscs;
specific heat;

half thickness of flat plate;

dimensionless stream function, equation (24);
function of Pr, equation (46);

dimensionless functional relation;
gravitational acceleration;

Grashof number, g8,0,,x3/v};

local heat-transfer coefficient;

L L, L, L, L, (fundamentaldimension of

length for x-, y-, z-, b-, p-direction;

M, fundamental dimension for mass;

Nu, local Nusselt number, hx/A;;

Pe,  Peclet number, usx/a;;

Pr, Prandtl number, v,/ay;

R, radius of cylinder;

Re,  Reynolds number, u,x/vy;

t, temperature;

T, fundamental dimension for time;

u,v, velocity component;

ug;,  drawing speed of solid body.

Greek symbols

4, thickness of laminar velocity boundary layer;

dr,  thickness of laminar temperature boundary
layer;

s, temperature penetration depth in solid body;

¢, z/e or z/R;

n ylus/vex)t;

8, temperature difference from bulk
temperature of fluid, t—t,,;

0, fundamental dimension for temperature;

A, thermal conductivity;

I dynamic viscosity;

u<

kinematic viscosity;
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¢, conjugate dimensionless x-coordinate,
foprf/us ez(ps cs)2 or X)‘fpfcf/us Rz(ps Cs)z 5

0, density;

1, time;

7,,  time required from stoppage of endless belt
driving motor to taking of interference

photograph;

o, azimuthal coordinate of cylindrical
coordinates system;

o, function of x, equation (29);

o, function of x, equation (30);

¥, stream function.

Subscripts
£ fluid;
s, solid.

1. INTRODUCTION

INVESTIGATIONS on heat transfer of a continuously
moving flat plate [1-4] and a circular cylinder [5-13)
have been done under various surface conditions, i.e.
that the surface temperature is constant, that the surface
heat flux is constant, that the moving solid and the fluid
are conjugated through surface thermal conditions, etc.

According to general characteristics of conjugate
heat-transfer problems [14], in heat transfer of the
continuously moving surface under conjugated condi-
tions the combination of physical properties of the
moving solid and the surrounding fluid is supposed to
play an important role, since this problem is an un-
steady one from a viewpoint of the coordinates system
fixed to the moving solid. However in previous in-
vestigations under conjugated conditions, theoretical
analysis has been done neglecting heat conduction in
the solid [12] and experiments have been carried out
only in the air by drawing glass fibres [5, 6,9].

First, in this paper, the problem is discussed using
vectorial dimensional analysis which distinguishes the



462 Kikun CHIDA and YosHIRO KATTO

dimensions of length by phases and dimensionless
functional relations describing the phenomenon are
determined. The numerical solutions for the flat plate
and the cylinder, taking account of heat conduction
in the solid, are given and arranged using the conjugate
dimensionless group [14] and the combination effect
of physical properties of both phases is made clear.

Finally, experiments of the flat plate case to demon-
strate the combination effect varying flat plate materials
(stainless steel, plastic) and fluid (air, water) are
described.

2. FORMULATION OF THE PROBLEM
As shown in Fig. 1, an infinite solid body of constant
cross section (flat plate of half thickness e, or circular
cylinder of radius R) at temperature to(6o = to—1tx) is

AN

F1G. 1. Conjugate heat transfer of continuously
moving solid.

continuously drawn with a constant speed u; through
a drawing slit at x = 0 into a fluid whose bulk tem-
perature is t (0, = 0).

This paper deals with conjugate heat transfer of this
continuously moving surface, namely heat transfer
when the temperature field in the solid and that in the
fluid are conjugated to each other through thermal
conditions concerning the temperature and the heat
flux at the surface, under the assumptions that the fluid
is laminar and the drawing speed is fast enough to
neglect axial heat conduction.

3. THEORY (VECTORIAL DIMENSIONAL ANALYSIS)

3.1. Vectorial dimensional analysis [14]

In this conjugate problem; the solid and the fluid
have different physical properties for heat conduction,
on the occasion of applying vectorial dimensional
analysis to this problem, the z-coordinate must be
distinguished from the y-coordinate (as to the coordi-
nates system see Fig. 1), although they have the same
spatial direction. As the fundamental dimensions of
length, L, is taken for x-direction, L, for y-direction,
L. for z-direction and L, for b-direction.

3.2. Flat plate

The whole region is divided into two regions, one
from the drawing slit to x., where the temperature
penetration depth in the solid J, reaches the centre-
line of the flat plate, the other from x,, to x = oc. In
the first region (x < x,), it must be noted that the half
thickness of the flat plate does not concern the phenom-
enon primarily. The dimensioniess functional relation
for the surface temperature ¢, (6,, = t,,—~ £.;) is obtained
from the following physical quantities (bracketed
quantities denote dimensions)

LM L,H
A e T
M H ; L.H
T 7 7 Crl e s\ T 1 Ao |
MLl Y\ mel “|LL,er

H L,
sts > s| A |3 9 @
psc [L,L,Lb®:| “ [T] o[€]

by selecting 0,,, uy, 4, as independent quantities:

O _ p(s, P W
0o

where B{= A;p;cs/Aspscs) is a parameter representing
the combination effect. In the following B will be
denoted as “physical properties parameter”. In equa-
tion (1) it must be noted that the surface temperature
of the flat plate keeps a constant value in this region.
This means that the fluid in this region takes the similar
laminar boundary-layer state. The local heat-transfer
coefficient 4 in this region, therefore, takes the value
of the similar laminar boundary layer solution for the
constant wall temperature condition hy. The dimen-
sionless functional relation for the local heat transfer
coefficient is thus determined as

Nug  hox [{ux\*
o fo¥ = F(Pr). 2
Pét if/(“f) #) @

Dimensionless functional relations for temperature dis-
tributions in the fluid and the solid are also obtained
as follows:

Hi = F(n. B, Pr) 3)
o
6;
—=F({*, B, Pr) 4
B

where

% %
U s

’7 - y( : ) ’ g* N Z< u > '
VeX asx

In the other region (x,, < x), taking account of e[ L, ],
the following dimensionless functional relations for the
surface temperature and the local heat-transfer coef-
ficient are obtained:

O _ ree. B Py 5)
o

Nu

Pt F(&, B, Pr) (6
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where

XAspses
= 7
* T oy @

and ¢ is a conjugate dimensionless x-coordinate, that
is, its definition includes both the conventional dimen-
sionless group defined in the fluid u;x/a, and the con-
ventional dimensionless group defined in the solid
as x/u,e?. Dimensionless functional relations for tem-
perature distributions in the fluid and the solid are also
determined as

i F(¢,n, B, Pr) ®)
(0]
6,
9—=F(€,C,B,Pr) (9)
0
where
(=2

Thus, when the flat plate with uniform temperature
0, at the drawing slit is drawn into the fluid, the surface
temperature experiences an abrupt drop at the instance
of drawing, and this value is maintained until x.,, then
the surface temperature drops continuously as drawing
proceeds.

3.3. Cylinder

In the neighbourhood of the drawing slit, the situ-
ation for the cylinder is the same as for the flat plate.
In the cylinder case it must be noted that the radius
of the cylinder plays two roles, one as a characteristic
length of the cylinder R;, and the other as a charac-
teristic length of the fluid side coordinate R;, and the
dimensions of the former role is L, while that of the
latter role is L,. Thus there is no reason to divide
regions in the cylinder case as is done in the flat plate
case.

The dimensionless functional relation for the surface
temperature is determined taking account of physical
quantities

LM LH
[© L.]. 4 , A Y ,
0l L w| 2 A 2]
M H L.H
Tl “\ Mol MIirLer|
x =y~ x~e
H L,
L =1 RJL,, R
pscs[LxLszQ}’ us|:Ti|’ f[ y]’ s[Lz]’ 00[®]
0__F<€’Rf/’fcf
Ropsc,’

as follows:
B P
i )

where £ is a conjugate dimensionless x-coordinate
defined by

(10)

XA pyrcy
Us Rz(Ps Cs )2
and the parameter R, pycs/R;psc; is substantially equal

to prcs/pscs, the form pres/pocs will be used in the
following. Also the dimensionless functional relation

£ = (11)
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for the local heat-transfer coefficient is determined as

N
—”:F(é,—pr’,B,Pr)
psC

12
Pet sCs (12
4. THEORY (NUMERICAL SOLUTIONS)

4.1. Flat plate
The fundamental equations for the continuously
moving flat plate are

%-’r%:o (13)
u@~-i-va—u=vfa—2E (14)
éx 3y oy?
u(;gf +v i;;’ faaye, (15)
us%-—‘ s% (16)
0x oz?

and relating boundary conditions are

at y=0 u=u, v=0
17
at y= u=0
at x =0 8;=0, 0,=0 )
00 00,
at y=0z=0) O;=0,, —A—L=A—2
dy 0z L 18)
at y=o0 0,=0
at € 9,
z= —=0.
0z J

Rewriting fundamental equations and boundary con-
ditions into dimensionless forms following equations
and boundary conditions are obtained:

& s &
dﬂ+2 o =0 (19)
2 (9 Sf.e If r
5772<90>+P 2 a‘(?oz) _5£< ) 0
d/6,\ 0% (6,
Ba‘e(e—) :f(a‘) @b
and
at n=20 3{1 1, f=0
22)
at =00 3—{1=0
_ 95_— 9,_0f0 )
até—O 0—0—1, 6;—0—0
8, @,
at n=0({ = 0) é=5;,
a (6, (Pr-&f &
_%(e() B ac(%)} @)
at n = —g£=
[4]
o (8:\ _
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where f(y) is the dimensionless stream function defined
by

fin = b, ”

(vyxuy)

(24)

as is done usually. The solution of the energy equation
of the fluid for the constant surface temperature con-

dition
d* (60 S d <9fo>
R LD T Sl 13 B
dn2<90> "3\ 6,

is taken as the starting temperature condition in the
fluid. The numerical solution of equation (19) with
boundary conditions equation (22), f(y), has been
already given by Sakiadis [15]. In this study. equations

(25)
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combination effect. In this study, heat conduction in
z-direction in the cylinder is taken account of.
Fundamental equations of integrated forms are

[ Ou

d J
J uz-(R+y)'dy+R'Vf'(“> =0 (26)
dx y=0

i} 5,\"

/A

d o C()f’
(Y Jy=0

de

d (R 00,

< us-()s-(R——z)~dZ+R-as~(h -0 (28
dx 0 0z 2=0

where d, 3, are velocity and temperature boundary-
layer thicknesses respectively. The velocity profile is put
in the form

(20), (21) with boundary conditions equation (23) are ¥ 1— l In (1 " ¥ 29)
simultaneously solved using Sakiadis’ solution f(x). i 10 R
I ) <075 Present dato
107 "I“‘o_z,________ = Flat plate { udm/s) PrJ
| (Stainless steet < -2 . X XN ainiess 230
—water) 107 - ——- steel :
L | + 1230
laa10-"38 [o .
! B-10° N . IB=10 0-46
)‘ ....... 3 a | 0-46
o 05 - — - ——  — e
@l F—Theoreflcol solutions \x Plastic |4 075
[~ (Plastic —woter) “ B=10093 |® 0-45
b c—-pPr=| NX X X L v 045
e Pr =10 AT X E xtrapoiation point: X
L ; 10
or experimental &
o conditions ™.
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F1c. 2. Surface temperature of continuously moving flat plate.
Numerical calculations are carried out as follows. and the temperature profile in the l.uid
The whole region including both the fluid and the solid 0, 1 y
are divided into the grid. Along the x-coordinate lines o 1—5' In{ 1+ R (30)
w

of the grid are numbered as i=1,2,..., and so on,
along the z-coordinate as j = 1,2, ..., j, starting from
the centre-line of the flat plate (number j, denotes the
surface) and along the y-coordinate as j = j,+ 1, j,+2,

.+ s jmax- When temperature distributions at any axial
positioni, 0(Tj,j = 1,...,jn) a0d O T, j = jus - -, finax)
are known, the temperature distribution at the axial
position i+ 1(Ti+1;,/ = 1,...,ju, .-, jmax) is determined
by equations (20), (21) with boundary conditions equa-
tion (23) in finite difference forms, as the solution of
Jmax-dimensional linear equations. Calculation results
for the surface temperature are given in Fig. 2 as
theoretical solutions.

4.2. Cylinder

It is difficult to solve fundamental equations for
cylinder in partial differential forms, here the problem
is solved using the integral method, the same method
used by Bourne and Dixon [12]. They neglected heat
conduction in the cylinder, and could not detect the

where ¢ and ¢ are unknown functions of x. On the
other hand, the temperature profile of the cylinder in the
region x < x,, is expressed in the form

6,— 6o z z\?
=1-2-{— — 31
6,00 <5> ’ <6> .
using boundary conditions
at z=0 f,=10,
at z =0, 0, = b, (i@s_: 32
0z

and in this region there exists one more condition, i.e.
Gws = Gws, and this condition can be expressed by
B.. ¢, O, as

s As Oo—0,
2202 33
R ¢ Ar 0, 33)
In the region x > x,,, the temperature profile is deter-
mined as
) 1 i N2
_9_5=1+Af.i_4. s (£ (34)
6. Ao \R) 2 Ao \R
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Fi1G. 3. Surface temperature of continuously moving cylinder.

using conditions

at z=0 Os = 0w, Gur= quws
06, 5
at z=R —=0. 33)
0z

Putting equation (29) into equation (26) and re-
arranging, the momentum equation takes the form

9§_L.<pfcf>2_e2¢~<<p—1)+<p+1

de  2Pr \ pycs @? - (9

The energy equation for the fluid can be converted
into the following form, inserting equations (29) and
(30) into equation (27),

(Qy_
d o

— (e (p—¢p+1)—Qopdp+o+d+1);

do | ¢d
2(?) e2?-(p—~+ep+1
_ 0/ Y~ ®
=~ per) (6>07) (37)
@)
4 | M {e? (p—~o+1)—Qod+o+d+1))
o | oo @ PPT @
25
_ \bo) e-(p=D+o+1
= = (6<dp). (38

The energy equation for the cylinder, equation (28), is
transformed into

(i) ao| P-a)
d 0o/ st U \6o)S 4¢

— 1= .
do 2 (9_w Ay 0w A
90 90

3.<ﬁ‘
o) (prer € (p—D+o+1
4:Pr PsCs (»024)

(39)

in the region x < x,, using equation (31) and
fi_ <1 + ;tf . %
do 4l.¢) \By
@)
_ O <prf> e2""((p—l)+(,0+1

T P \psc ¢

(40)

in the region x > x,, using equation (34).

Numerical calculations are carried out as follows.
First, integration of equation (36) gives the relation
between ¢ and ¢. Then the energy equation for the
fluid and the energy equation for the cylinder are
simultaneously solved concerning unknowns 8,,/0, and
¢ as functions of ¢, and through the relation between
¢ and o, solutions are converted to relations 8,,/00 vs &
and ¢ vs & The relation ¢ vs £ is finally arranged as
the relation Nu/Pe? vs ¢ using

Nu (pec,\ &

pet " \prep) o

In Fig. 3, the surface temperature variation with &
are shown for Pr = 10.

(41)

43. Considerations on the theoretical results

Vectorial dimensional analysis shows that the
moving solid experiences a sudden drop of the surface
temperature at the neighbourhood of the drawing slit,
under the assumptions stated in Section 2, and the
temperature is determined by the flow condition and
the combination of the fluid properties and the solid
properties. Numerical calculation results shown in
Figs. 2 and 3 confirm this situation.

As a preparation, the classical contact problem of
unsteady heat conduction is considered. Two half-
infinite bodies at different temperatures (o, in f-phase,
tos in s-phase) ate suddenly brought into contact at
time t = 0. According to the textbook on heat con-
duction [16], the temperature of the boundary surface
B.(=tw—toy) is kept constant during whole process
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7> 0, and the value is given as follows (0y = 19s—t0)
0. Aeas?

= e 42
()0 ),sas_3+/lfaf§ ( )
This equation can be rewritten using B as
O 1 3)
o 1+BF

Now we return to our problem. As stated in the
Section 3, near the drawing slit the dimension ¢ does
not concern the phenomenon primarily, the solid in
this region can be considered to be half-infinite. If the
problem is seen from the viewpoint of the coordinates
system fixed to the moving solid, the problem is similar
to the above described unsteady contact problem, only
differing in that there exists the laminar flow in the
fluid. The classical theory states that the temperature
distribution in the half-infinite solid is

0.—0,, z
- = erf| ———— 44
6o—0, <2 J(m)) .
and the surface heat flux calculated from this equation is
As(00—0.)
s = —— 45
q Jwarn) (45)

On the other hand, as the fluid is in the state of the
similar laminar boundary layer with the constant
surface temperature, heat transfer can be expressed by

Nuo _
Pet

where fo 1s a function of Pr only and f, = 0.4174,
0.4438, 0.5314, ..., according to Pr = 0.7, 1, 10, ... [1].
Equation (46) gives the surface heat flux calculated from
the fluid side:

. Us
et (2o

As the drawing speed u; is constant, dependency of
gws and g,,; on x are equal, and putting gus = q.s the
following formula is obtained:

0w 1

0o 1+B - Jn fo
The values calculated by equation (48) coincide with
numerical solutions shown in Fig. 2 and Fig. 3. It
must be also noted that equation (48) coincide with

equation (43) when the fluid becomes still relative to
the solid, i.e. when Pr — cc.

Jo (46)
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(48)

5. EXPERIMENT

In this chapter, experiments to check theoretical
results, especially the effect of the physical properties
parameter, varying combinations of fluids (air, water)
and flat plates (stainless steel, plastic), are described.

The experiments are limited to the flat plate case,
since the effect of the physical properties parameter on
the cylinder case is much the same, and as to the
cylinder case only a comparison between theoretical
results and the presently available data which are
arranged using the conjugate dimensionless x-coordi-
nate is made.

Kikust CHIDA and YOSHIRO KATTO

5.1. Experimental apparatus

There are at least two ways to realize the flow of
the continuously moving flat plate in the laboratory,
one to use a large diameter drum such as used by Tsou
et al. [1], the other to use an endless belt or a very
long belt. In this study, endless belts of 4-4.5m long
and 4cm wide are used. The driving system of the
endless belt is shown in Fig. 4. The motor, through
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F1G. 4. Experimental apparatus.

the pulley A, drives the endless belt with speed u, from
0.45 to 3.0m/s. The pulley C can be slid horizontally
and gives the tension to the endless belt. Cylindrical
heaters G and H can heat the endless belt with variable
heating rate. The measuring section is the circular
window region positioned at the upper part of the
measuring vessel fitted to the frame. The measuring
vessel (260 x 200 x 70mm) is composed of two half-
vessels and assembled holding the endless belt between
them.

The velocity distribution in the air is measured by
the constant-temperature type hot anemometer (tung-
sten hot wire of 5pdia.). Temperatures in the fluid
are measured by the Mach-Zehnder interferometer
(6 cmdia.).

5.2. Measuring principle of surfuce temperature in water
experiments
In air experiments, temperature boundary layers are
thick enough that displacements of fringes in inter-
ference photographs give temperature distributions
through the relation

Oy = 49)

where L is the width of the endless belt, n is the
refractive index of the fluid, 4, is the wave length of
the monochromatic light, As, is the distance between
neighbouring reference fringes and As is the fringe
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displacement from the reference fringe at an arbitrary
position y (see Fig. 5). However in water experiments,
temperature boundary layers are quite thin and almost

7%

-

As, As,

Endless
~belt

------- | E—

F16. 5. Schematic representation of
interference photograph.

cannot be seen, so temperature distributions in the
water when the endless belt is moving cannot be
obtained. Therefore a following method to determine
surface temperatures is employed in this study.

After the endless belt driving motor is suddenly
made to stop at time t = 0, the surface temperature
of the endless belt begins to propagate into the water.
In Fig. 6, interference photographs after the stoppage
of the endless belt driving motor are shown in order
of time passage. It can be easily seen that for a short
time after the stoppage of the endless belt driving
motor, unsteady heat conduction into the water occurs
normal to the endless belt surface [the first stage, see
Fig. 6(a)], then rises heat conduction parallel to the
endless belt surface and/or natural convection [see Fig.
6(b), (c)]. We notice the first stage of this propagation
process. In Fig. 6(a) the situation is not clear because
of over-heating of the endless belt, so thereafter the
heating rate of the endless belt is appropriately ad-
justed. One of interference photographs of the first
stage thus obtained is shown in Fig. 7. Figure 5
represents the schematic diagram of the interference
photograph. In the following, the temperature variation
with time at a fixed axial position x (see Fig. 5) is
discussed. From time z = 0 to time 7 = 7, when the
interference photograph is taken, the temperature at
(%, ¥) = (x, 0) falls gradually from the initial value Bw(x)
to B.(z,). If 7, is not so large (in our experiments,
7p = 0.5-1.05) the nose part of the temperature propa-
gation will keep the initial characteristics, since the

467

FiG. 6. Unsteady process in water after stoppage
of endless belt driving motor.

F1G. 7. Example of interference photo-
graph of one-dimensional unsteady
heat conduction in water.

temperature change, 0.(r)—6,,, propagates into the
water following after the initial temperature propa-
gation. To confirm this situation, calculations of un-
steady one-dimensional heat conduction are done,
giving the initial temperature distribution in the bound-
ary layer formed when the endless belt is continuously
moving (the thickness of the temperature boundary
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F1G. 9. Temperature distribution in air.

layer is very thin, as already stated), and the tem-
perature variation at (x,0) with time in three ways,
8./8,=1, 6./6,=1-0353(t—005) and 6,/0,,=1—
(t —0.05). Calculated temperature distributions in the
water at time 7, are shown in Fig. 8. These results
show that the initial temperature distribution does not
affect this unsteady heat conduction process, and that
the nose part of the temperature propagation (6,/6,, <
0.25 in Fig. 8) coincide with each other irrespective
of differences of given variation ways of the tempera-
ture with time, and they can be represented by the
curve erfc[y/2\/(afr)j. Thus the surface temperature
0., at the axial position x can be obtained by plotting
the nose part data derived from the interference photo-
graph on the curve erfc[y/2/(a;7)]. Some experimental
data are also plotted in Fig. 8.

5.3. Flat plate results

Experiments in the air are substantially same to
experiments with the constant surface temperature,
since the values of the physical properties parameter
are less than 107 * for both the stainless steel endless

belt and the plastic endless belt, and the measurable
length of x is less than 4cm, therefore experiments
in the air are to be done in the neighbourhood of the
first region described in the Section 3.2 (see theoretical
solutions in Fig. 2). Temperature distributions by air
experiments are shown in Fig. 9. By these results it is
seen that the laminar boundary layer with constant
surface temperature [see equation (25)] is formed on
the continuously moving endless belt.

Surface temperatures of the continuously moving
endless belt in water experiments are shown in Fig. 2
using log; ¢ & Figure 2 is constructed by the following
procedure. From one interference photograph as shown
in Fig. 7, 8,, for three to five points of x can be obtained
by the method described in the preceding section.
However 0, cannot be measured in our experiments,
so one value of 6, for an arbitrary point x is first
put on the theoretical curve, then the reading of the
ordinate readily gives the value of §,. Using thus deter-
mined value of 8, 8,, for other points are plotted on
Fig. 2. Extrapolation points in Fig. 2 are derived by
plotting 6,,/8¢ vs ¢ directly.
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FiG. 10. Arrangement of presently available data for continuously moving cylinder.

SA4. Discussions on flat plate experiments

In this section several discussions concerning flat
plate experiments are made.

Concerning two-dimensionality of the endless belts
it seems to be no matter, since thicknesses of boundary
layers formed on the endless belts are very thin.

Finiteness of the measuring vessel usually gives rise
to useless secondary flow disturbances such as a
circulation, but in our experiments steady states are
quickly realized after commencement of the endless
belts driving, therefore measurements can be made in
short times, within which there can be seen no dis-
turbances in interference fringes.

Also disturbances resulting from natural convection
are not observed, and for the sake of smallness of
temperature differences between the endless belts and
fluids, values of Gr/Re? are less than 4 x 1072 in air
experiments and less than 10™* in water experiments.

Lastly, in interference photographs taken in water
experiments reference fringes are slightly curved and
distances between them are not uniform. Reasons for
these deformations are probably due to deformations
of optical glasses attached to windows of the measuring
vessel and the compensating vessel. However correc-
tions owing to this are negligibly small.

5.5. Arrangement of presently available cylinder data
Presently available cylinder data for conjugate heat
transfer are those of glass fibers drawn into the air
[5,6,9]. Data taken from [12] (in [12], data from [6]
and [9] are cited), arranged using the conjugate dimen-
sionless x-coordinate, equation (11), are plotted in
Fig. 10. Because of lack of physical properties data for
glasses under experimental conditions, use is made of
physical properties data for the quartz glass at 20°C.

6. CONCLUDING REMARKS
Conjugate heat transfer of the continuously moving
surface (flat plate, cylinder) is discussed taking account
of heat conduction in the solid. Through theoretical
studies and experiments using the Mach-Zehnder
interferometer, it is shown that this problem is com-
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pletely arranged by using the conjugate dimensionless
x-coordinate, and the physical properties parameter B
which represents the effect of the combination of the
solid and fluid physical properties on heat transfer is
also shown to play an important role in this heat
transfer.
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TRANSFERT DE CHALEUR CONJUGUE SUR DES SURFACES EN MOUVEMENT
CONTINU

Résumé—On étudie le transfert de chaleur conjugué sur des surfaces en mouvement continu (plaque

plane, cylindre circulaire) en tenant compte de la conduction thermique dans les solides en mouvement,

et on montre qu’il peut étre traité complétement & I'aide du groupement adimensionnel conjugué

[X2;p5Cr/Usp? (psCs)* pour la plaque plane, Xi,p,C/UsR?* (psCs)* pour le cylindre]. Leffet de

I"association du solide et du fluide est également éclairci, d’abord par des études théoriques, ensuite par
des expériences sur plaques planes dans l'eau.

ZUSAMMENGESETZTER WARMEUBERGANG AN GLEICHMASSIG
BEWEGTEN OBERFLACHEN

Zusammenfassung— Der zusammengesetzte Wirmelibergang an gleichmissig bewegten Oberfldchen
(ebene Platte, kreisformiger Zylinder) wird analysiert unter Beriicksichtigung der Wirmeleitung im
bewegten Festkorper und wird vollstidndig dargestellt durch folgende dimensionslose Gruppen,

XippsCylUse* (ps Co)? fiir die ebene Platte
XAspsCr/UsR? (psCo)? fiir den Zylinder

Auch der Einflufl der Kombination von Festkorper und Fluid wird dargelegt, sowohl durch theoretische
Untersuchungen wie auch durch Versuche mit ebenen Platten in Wasser.

COMPSXEHHBIM TEINJIOOEMEH HEMNPEPLIBHO JBMXYHIMXCS NOBEPXHOCTEN

AHHOTAINA — AHATH3UPYETCS CONPAKEHHBIM TEMI00OMEH HENPEPbIBHO ABHXYLUUXCSA NIOBEPXHOCTEH

(TU10CKa A IUTACTHHA, KPYTOBO# LMIMHAP) C YMETOM TEMIONPOBOAHOCTH B IBUXKYLLIUXCS TBEPAbIX TENAX.

Tloka3aHo, YTO COMPAXEHHLIR TENNOOOMEH OMUCHLIBAETCA C MOMOILLIO GE3Pa3IMEPHOTO KOMIIIEKCa

{ XA pycrluse®(pses)? ana nnockoil naactuubl U XAppycplus R*(pyc,)? ans unnuuapal. Kpome Toro,

TEOPETHYECKH M IKCMIEPMMEHTANILHO HA NMPHUMEPE TJIOCKMX IUIACTHH B BOAE HMCCNEnoBaH 3hdexT
B3aUMOAEHCTBHS TBEPAOIO TENAa U KHAKOCTH.



